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Abstract

Temperature dependent measurements of spherulite growth rates carried out for i-

polystyrene, poly(ǫ-caprolactone) and linear polyethylene show that the controlling acti-

vation barrier diverges at a temperature which is 14K, 22K and 12K, respectively, below

the equilibrium melting points. We discuss the existence of such a ‘zero growth tempera-

ture’ Tzg in the framework of a recently introduced thermodynamic multiphase scheme and

identify Tzg with the temperature of a (hidden) transition between the melt and a meso-

morphic phase which mediates the crystal growth. The rate determining step in our model

of crystal growth is the attachment of chain sequences from the melt onto the lateral face

of a mesomorphic layer at the growth front. The necessary straightening of the sequence

prior to an attachment is the cause of the activation barrier. A theory based on this view

describes correctly the observations. With a knowledge of Tzg it is possible to fully establish

the nanophase diagram describing the stability ranges of crystalline and mesomorphic layers

in a melt. An evaluation of data from small angle X-ray scattering, calorimetry and optical

growth rate measurements yields heats of transition and surface free energies of crystals and

mesophase layers, as well as the activation barrier per monomer associated with the chain

stretching. According to the theory, the temperature dependence of the crystallization rate
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is determined by both the activation energy per monomer and the surface free energy of

the preceeding mesomorphic layer. Data indicate that the easiness of crystallization in

polyethylene is first of all due to a particularly low surface free energy of the mesomorphic

layer.

1 Introduction

Different from the large majority of low molar mass systems where crystallization begins imme-

diately when the melt is cooled below the equilibrium melting point, crystallization in polymeric

systems is much retarded. A considerable supercooling is necessary before spherulites show

up in an optical microscope. At first, they expand slowly so that growth rates can be easily

determined. On further cooling the growth rate increases, then passes over a maximum and

drops again, down to vanishingly small values when the glass transition is approached. For

many crystallizing polymer systems growth rates can be measured through the full temperature

range since the maximum values are still low. Polyethylene represents one of the few excep-

tions. Here growth rates rise to such high values that measurements remain restricted to a

certain temperature range below the equilibrium melting point. It is a characteristic property

of polymer crystallization that growth rates vary exponentially with temperature, both near the

melting point where they decay and near the glass transition where they increase with rising

temperature. The behavior indicates control of the growth process by some activation step.

Near the glass transition it relates to the diffusive motion of chain sequences which have to pass

over intra- and intermolecular activation barriers. Barrier heights are essentially constant so

that jump rates increase with rising temperature. The conditions found in the high temperature

range near the melting point are different. The slowing down of growth when the temperature

goes up is indicative for an increase of the barrier height. In polymers lamellar crystallites form

whose thickness also increases when the crystallization temperature is raised. It is an obvious
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idea to relate the two observations and to associate the increasing barrier height of the activation

step with the increasing thickness of the growing crystallites.

Taking up this idea, Hoffman and Lauritzen [1] developed a model which became popular

within short time. Its main assumptions were:

• Crystals grow with a thickness near to their stability limit as given by the Gibbs-Thomson

equation, i.e., with a thickness

d =
2σeT

∞

f

∆hf(T∞

f − T )
+ δ (1)

where σe and ∆hf denote the surface free energy and the heat of fusion, respectively.

According to the equation, crystal thicknesses are inversely proportional to the supercool-

ing below the equilibrium melting temperature T∞

f of macroscopic crystals, apart from a

minor excess length δ necessary for providing a driving force.

• The activation step is associated with the formation of a secondary nucleus on the growth

face. It extends in chain direction over the whole crystallite, i.e., has a length d.

The model treatment yielded an equation for the growth rate u of the form

u = u0 exp

(

−
TA

T − TV

)

exp

(

−
TG

T∞

f − T

)

(2)

The first exponential factor expresses the temperature dependent segmental mobility as given by

the Vogel-Fulcher equation (TA: activation temperature, TV: Vogel temperature). The second

exponential factor includes the activation energy associated with the formation of a secondary

nucleus. This activation energy diverges together with d at T∞

f . The Hoffman-Lauritzen model

was widely accepted. It became common procedure to evaluate growth rate data of polymer

systems as suggested by the theory, and to derive from results surface free energies of the

secondary nucleus.

About a decade ago, understanding of polymer crystallization began to change. Eq.(1) was

not well founded by experiments. Existing measurements for polyethylene [2] which were taken
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as support were not reliable. Polyethylene crystallites thicken in the solid state so that it is

very difficult or even impossible to pick up the initial thickness entering into the theory. We

therefore carried out time- and temperature dependent small angle X-ray scattering experiments

(SAXS) for several other crystallizing polymers which do not have this complication: s- and i-

polypropylene, poly(ǫ-caprolactone), poly(1-butene) and octene copolymers of polyethylene [3];

they all keep their crystal thickness constant. The results did not agree with Eq.(1). As it

turned out, the law for the temperature dependence of d has also the form of the Gibbs-Thomson

equation, however, it includes another controlling temperature, being given by

d =
1

Cc(T∞

c − T )
. (3)

The temperature T∞

c which determines the crystal thickness is always located above T∞

f , in

the case of polyethylene about 10K, for poly(ǫ-caprolactone) about 30K and for i-polystyrene

about 20K. In addition, it was observed that the thickness of crystals developing at a given

temperature does not change if co-units or stereo-defects are incorporated in the chain, whereas

the melting points are depressed as expected from Raoult’s law.

Eq.(1) turning out to be incorrect, Eq.(2) for the growth rate became doubtful as well. So

we performed a check. The first results, obtained for poly(ǫ-caprolactone) (PǫCL)[4] and linear

polyethylene (PE) [5], are presented here once again, and they indeed show that Eq.(2) also

has to be changed. The measurements show that growth rates are given by an equation with

the form of Eq.(2), however, T∞

f has to be replaced by another temperature, the ‘zero growth

temperature’ Tzg. It is always located below the equilibrium melting point, for PE more than

10K, and in the case of PǫCL even 22K. The correct relationship reads:

u = u0 exp

(

−
TA

T − TV

)

exp

(

−
TG

Tzg − T

)

. (4)

Hence polymer crystallization and melting are controlled by three characteristic temperatures

rather than T∞

f only. Crystallite thicknesses vary with the distance to T∞

c , and the growth rate
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depends on the distance to Tzg. The sequence of the three temperatures is always T∞

c > T∞

f >

Tzg.

We offered an explanation for the existence of three characteristic temperatures. Since several

years we advocate the view that the pathway followed in the growth of polymer crystallites

includes an intermediate phase of mesomorphic character[6]. Chain sequences are first attached

to the growth front of a mesomorphic layer. The latter thickens spontaneously up to a critical

value where block-like crystallites form out of it. Introducing three phases, the scheme includes

also three transition temperatures, T∞

am between the amorphous melt and the mesomorphic

phase, T∞

mc between the mesomorphic phase and the crystallites, and T∞

ac =T∞

f for the crystal

melting. We identify T∞

am with Tzg and T∞

mc with T∞

c .

What is the nature of the activation step? The traditional view - formation of a secondary

nucleus - cannot be transferred to the case of a growth face with non-crystalline, mesomorphic

structure. In this paper we try to give an answer and present a new approach.

The paper is organized as follows: Section 2 contains a short summary of the ‘multi phase

scheme’ introduced in a general treatment of polymer crystallization and melting [7]. Section

3 presents a new theory for the growth kinetics. Section 4 collects relevant experimental results

previously obtained for PǫCL, i-polystyrene (iPS) and PE and additional growth rate data of

iPS. The results are commonly discussed in Section 5. The data evaluation yields for the three

systems heats of transition and surface free energies of the crystalline and the mesomorphic

phase, as well as the activation free energy which controls the growth rate.
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2 Thermodynamic scheme treating polymer crystalliza-

tion and melting

Based on the results of SAXS studies we proposed a pathway of polymer crystallization as it is

depicted in the sketch in Fig. 1. A thin layer with mesomorphic inner structure forms between

the lateral crystal face and the melt, stabilized by epitaxial forces. Stereo defects and co-units

which cannot be incorporated in the mesomorphic phase are rejected at the melt front. A high

inner mobility allows a spontaneous thickening of the layer up to a critical value where the core

region crystallizes under formation of a block. In a last step the surface region of this block, at

first still disordered, perfects, which leads to a further stabilization (see figures 3 and 4 in [8]).

The block structure is retained in the final lamella [9].

The thermodynamic conditions under which such a mesomorphic phase can interfere and

affect the crystallization process are described in the drawing of Fig. 2. The schematic plot

shows for both the crystalline phase (label ’c’) and the mesomorphic phase (’m’) the difference

of the chemical potential to that of the melt (’a’):

∆gac = gc − ga ,

∆gam = gm − ga . (5)

Coming from high temperatures the chemical potential of the crystalline phase drops below

the value of the melt when crossing the equilibrium melting point, here denoted T∞

ac . The

mesomorphic phase requires a lower temperature, T∞

am, to fall with its chemical potential below

that of the melt. The plot includes also a temperature T∞

mc. It represents the temperature of a

hidden transition, namely that between the mesomorphic and the crystalline phase. Since the

chemical potential of the crystal is always below that of the mesomorphic phase, the latter is

only metastable for macroscopic systems. However, for small objects with sizes in the nm range,

stabilities can be inverted. Due to the usually lower surface free energy thin mesomorphic layers
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can have a lower Gibbs free energy than a crystallite with the same thickness. As shown by the

diagram, the transition temperatures have the order T∞

mc > T∞

ac > T∞

am.

Thermodynamics relates the three transition temperatures T∞

am, T∞

ac , T∞

mc to the entropy

increases ∆sma = sa − sm and ∆sca = sa − sc associates with a melting of the mesomorphic and

the crystalline phase, respectively. Since the slopes of ∆gam and ∆gac are given by ∆sma and

∆sca, one can write in linear approximation, neglecting changes of the slopes with temperature,

(T∞

mc − T∞

ac )∆sca ≈ (T∞

mc − T∞

am)∆sma , (6)

or

∆hma

∆hca

=
∆smaT

∞

am

∆scaT∞

ac

≈
(T∞

mc − T∞

ac )T∞

am

(T∞

mc − T∞

am)T∞

ac

. (7)

The multistage model of Fig.1 can be based on a thermodynamic scheme. It deals with four

different phases:

• the amorphous melt

• mesomorphic layers

and two limiting forms of the block-like crystallites, namely

• native crystals (labelled ’cn’) and

• stabilized crystals (with label ’cs’).

The scheme, being displayed in Fig. 3, delineates the stability ranges and transition lines for

these phases. The variables in this phase diagram are the temperature and the inverse crystal

thickness. The thickness is given here by the number n of monomers in a stem, i.e., n = d/∆z

with ∆z denoting the stem length increment per monomer. The transition lines are denoted

Tmcn (‘crystallization line’), Tacn , Tmcs (‘recrystallization line’), Tacs (‘melting line’), Tam, all to

be understood as functions of n−1. They represent equilibria determined by thermodynamics.
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Tacs is the Gibbs-Thomson line describing crystallite melting already included in Eq.(1) :

T∞

ac − T ≈
2σacs

∆sca

1

n
=

2σacsT
∞

ac

∆hca

1

n
(8)

(T∞

f is renamed in T∞

ac , ∆hca is the heat of fusion per monomer, and σacs is the excess free energy

of the monomers at surfaces). Proceeding in analogous manner in the derivation of expressions

for the other size dependent phase transitions, one obtains for Tmcn the equation

T∞

mc − T ≈
(2σacn − 2σam)

∆scm

1

n
(9)

and for Tmcs the equation

T∞

mc − T ≈
(2σacs − 2σam)

∆scm

1

n
(10)

with

∆scm = ∆sca − ∆sma (11)

σam and σacn denote surface free energies. We identify Tmcn with the experimental relationship

Eq.(3) which implies in particular that T∞

c , the controlling temperature for the crystal thickness,

is set equal to the transition temperature T∞

mc. The line Tam refers to the transition between the

melt and the mesomorphic layer and is correspondingly described by

T∞

am − T ≈
2σam

∆sma

1

n
=

2σamT∞

am

∆hma

1

n
. (12)

The line begins at the temperature T∞

am.

The scheme includes two points, denoted Xn and Xs, at which three lines cross. The crossing

indicates for Xn the coincidence

ga = gm +
2σam

n
= gc +

2σacn

n
(13)

and for Xs the coincidence

ga = gm +
2σam

n
= gc +

2σacs

n
(14)

Xn and Xs thus represent triple points with coinciding Gibbs free energies for amorphous, me-

somorphic and crystalline lamellae. The positions of Xn and Xs determine what happens during
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an isothermal crystallization followed by heating. The scheme predicts two different scenarios;

in the figure they are exemplified by the routes A and B, respectively. Route B, realized by

crystallizations at high temperatures, is as follows: At the point of entry, labelled ‘1’, chains

are attached from the melt onto the front of a mesomorphic layer with minimum thickness.

The layer spontaneously thickens until the transition line Tmcn is reached at point 2, where

native crystals form immediately. The subsequently following stabilization transforms them into

a lower free energy state. On heating crystallites remain stable up to the transition line Tacs

associated with a melting of the crystals (point 3). Route A (low crystallization temperatures) is

different: The beginning is the same - starting at point 1 with an attachment of chain sequences

onto a spontaneously thickening mesomorphic layer, then, on reaching Tmcn , the formation of

native crystals (point 2) followed by a stabilization. When heating the stabilized crystals they

at first retain their structure. At point 3a the transition line Tmcs is reached which relates to

a transformation into the mesomorphic state instead of melting. The consequence for a further

heating is a continuous recrystallization mediated by the mesophase ((3a) to (3b)). This ends

at the triple point Xs (3b) where the crystal melts. Exactly such melting properties with two

different scenarios are observed for crystallizing polymers [7][10].

3 Kinetics of lateral growth

If a lamellar crystallite grows following the multistage process from Fig.1, several steps are

performed. In the general case, all the steps will equally contribute to the resulting growth

rate, but under special circumstances one of the steps can get rate controlling, the other ones

becoming adjusted to it. As it appears, this simpler case is found. The observation that the

activation barrier diverges at a temperature Tzg which can be identified with T∞

am indicates

that the first step, the attachment of chain sequences to the lateral face of the mesomorphic

layer, determines the rate of growth. Starting from this assumption, a kinetical theory can be
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formulated in straightforward manner.

Considering about the nature of the activation step, the following idea looks reasonable:

Before a sequence, which lies coiled in the melt, is incorporated into the growing mesomorphic

layer, it has to be activated by a transfer into the overall straightened form required for an

attachment followed by an inclusion - different from the crystal the mesomorphic layer thereby

allows for a variety of conformations. The straightening has to reach at least the length set by the

initial thickness of the mesomorphic layer given by Eq.(12). The associated conformational free

energy, ∆F con, is proportional to the sequence length and changes therefore with temperature

according to

∆F con
∝ n ∝

1

T∞

am − T
. (15)

For Tzg= T∞

am this agrees with the experimental result expressed by Eq.(4), with a barrier height

which diverges at Tzg.

A detailed treatment has to consider the chain dynamics at the growth face of the advancing

mesomorphic layer. Growth rates are generally determined by the thermodynamic driving force

and the time scale of the processes at the growth front. In order to grow at a given temperature,

the mesomorphic layer has to be slightly thicker than the value neq given by Eq.(12) that

separates growing from shrinking layers. We therefore write for the number of monomers in an

attached stem

n = neq(T ) + δn (16)

introducing an ‘excess length’ δn which determines the thermodynamic driving force.

One can directly formulate an expression for the velocity of the growth front, u. At the

front there exists a dynamic equilibrium, with sequences of n monomers becoming attached

and detached. To describe the resulting growth kinetics we introduce two variables, j− and j+,

giving the rates of detachment and attachment respectively, taken per single site on the lateral
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growth face. u then is given by

u = bm(j+ − j−) = bmj+(1 −
j−
j+

) (17)

where bm denotes the monomer diameter. The expression 1 − j−/j+ represents the thermody-

namic driving force for a stem of m monomers. It vanishes at equilibrium where attachment and

detachment rates are exactly balanced, and increases with the excess length. Near equilibrium,

i.e., for a weak driving force, a linear relation holds

1 −
j−
j+

=
−∆gam

RT∞

am

δn . (18)

Using

−∆gam = ∆sma(T
∞

am − T ) (19)

the growth rate of a layer with thickness neq follows as

u = bmj+
∆sma(T

∞

am − T )

RT∞

am

δn (20)

For δn > 0, the case of interest, the attachment rate is larger than the detachment rate and the

growth face is shifted towards the melt. Conversely, for δn < 0, realized if the temperature is

increased above the equilibrium melting point of the mesomorphic layer, the detachment rate

becomes greater and the growth front moves back. In both cases, the basic time scale is set by

the coefficient j+.

The experimentally observed exponential change of the growth rate with temperature origi-

nates from of an exponential dependence of j+ on the sequence length

j+(n) = j0 exp(−µn) (21)

This is easily seen, by just remembering the kinetical criterion which controls the transforma-

tion process: The thickness of the mesomorphic layer growing at a given temperature is that

associated with the maximum growth rate. Applying this criterion, we write

u(δn) = bmj0
∆sma(T

∞

am − T )

RT∞

am

exp(−µn)δn (22)
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= bmj0
∆sma(T

∞

am − T )

RT∞

am

exp(−µneq) exp(−µδn)δn (23)

and search for the maximum. This is located at

δn =
1

µ
(24)

and associated with a growth rate

u =
bmj0∆sma(T

∞

am − T )

eµRT∞

am

exp(−µneq) (25)

For j0 we write, introducing the Vogel-Fulcher relationship,

j0 ∝ exp

(

−
TA

T − TV

)

. (26)

As mentioned at the beginning of this section, we propose to associate the activation barrier

with the straightening of a chain sequence prior to its attachment, which means to set

µn =
∆F con

RT
. (27)

µ is then identical with the change of the configurational free energy per monomer, denoted

∆f con:

µ =
∆f con

RT
. (28)

Experiments allow a determination of ∆f con based on the following relationships:

• The initial thickness of the mesomorphic layer forming at a temperature T is determined

by

neq =
∆hma

2σamT∞

am

1

T∞

ma − T
(29)

or

d = ∆zneq =
1

Cm(T∞

am − T )
(30)

• Combination of Eqs.(25),(26),(28) and (30) results in

u = u1

T∞

am − T

T∞

am

exp

(

−
TA

T − TV

)

exp

(

−
TG

T∞

am − T

)

(31)
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with

TG =
∆f con

RT∞

am∆zCm

(32)

As is shown in the following, SAXS, differential scanning calorimetry (DSC) and growth rate

measurements yield Cm and the ‘growth activation temperature’ TG. The activation barrier

per monomer ∆f con follows from Eq.(32).

4 Experimental results

Growth rate measurements were carried out for PǫCL [4] and linear PE[5], and now additionally

for iPS, complementing earlier investigations by SAXS and DSC on the same samples[11][12].

Growth rates of iPS were directly determined in a polarizing optical microscope with a heating

stage. The experiment started at 186 ◦C after a rapid cooling from the melt. Growth of one

selected isolated spherulite was observed and registered with a digital camera. Growth rates

were measured for this spherulite at a series of temperatures separated by steps of 3 K. Image

processing yielded the spherulite area as a function of time, and from the area the radius was

derived. The result is presented in Fig.4

Starting off from Eq.(4) it is possible to derive from the data the zero growth temperature

Tzg. We write

ln
u

u0

+
TA

T − TV

= −
TG

Tzg − T
(33)

and differentiate. A reordering leads to

(

−
d ln(u/u0)

dT
+

TA

(T − TV)2

)

−1/2

= TG
−1/2(Tzg − T ) . (34)

Fig. 5 shows a plot of the growth rate data from Fig. 4 according to Eq.(34), setting TA =

1458 K, TV = 327 K (from Ferry [13], confirmed by Friedrich in a recent measurement[14]).

The linear extrapolation suggested by the equation yields Tzg = 275 ◦C . Prerequisite for

an application of this procedure is a high accuracy of the measured growth rates so that the
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derivative d ln(u/u0)/dT can be reliably determined. Here this aim was obviously achieved.

The error limits for Tzg remain below ±2 ◦C . The continuous line in Fig.4 is a least squares

data fit based on Eq.(4), leading to the same results for the adjusted parameters Tzg and TG.

Inclusion of the weak linear temperature dependence of u0 according to Eq.(31) does not change

the result.

Fig. 6 presents the (T, d−1) nanophase diagram of iPS. The SAXS measurements yielded the

crystallization and the recrystallization line, both ending at T∞

mc = 310 ◦C . The location of the

triple point Xs and the melting line followed from the series of DSC scans reproduced in Fig. 7.

For crystallization temperatures up to 220 ◦C the final melting always takes place at 230 ◦C ,

which therefore represents the triple point temperature. The weak low temperature endotherms

in the DSC diagrams are to be associated with the melting of some initial crystallites which do

not participate in the recrystallization. Their locations established the melting line which ends

at T∞

ac = 289 ◦C [12]. With the knowledge of T∞

am = Tzg from the growth rate measurement

the a-m transition line is also exactly fixed: It starts from T∞

am and passes through Xs. Its

intersection with the crystallization line determines the second triple point, Xn. With this last

step the nanophase diagram controlling crystallization and melting of iPS in bulk is complete.

Table 2 gives the slope −dd−1/dT of the a-m transition line:

Cm =
∆hma

2σamT∞

am∆z
, (35)

of the melting line:

Cf =
∆hca

2σacsT
∞

ac ∆z
, (36)

of the crystallization line:

Cc =
∆scm

(2σacn − 2σam)∆z
, (37)

and of the recrystallization line:

Cr =
∆scm

(2σacs − 2σam)∆z
. (38)
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It furthermore includes the macroscopic transition temperatures T∞

am, T∞

ac , T∞

mc and the growth

activation temperature TG

Table 1: iPS: Data taken from Fig.5 and the nanophase diagram Fig.6

T∞

am T∞

ac T∞

mc Cm Cf Cc Cr TG

◦C ◦C ◦C nm−1K−1 nm−1K−1 nm−1K−1 nm−1K−1 K

275 289 310 3.66 × 10−3 2.75 × 10−3 1.66 × 10−3 2.01 × 10−3 788

Figs. 8 through 11 and table 2 present the analogous results for poly(ǫ-caprolactone). Optical

measurements of spherulite growth rates - again down to minimum values of the order of a

nanometer per minute - here were carried out in the temperature range between 48 ◦C and

58 ◦C , and the results are reproduced in Fig. 8. The linear extrapolation in Fig. 9 yields a zero

growth temperature at 77 ◦C . The time- and temperature dependent SAXS experiments led

to the crystallization-, recrystallization- and melting line included in the nanophase diagram of

Fig. 10. The location of the triple point Xs is confirmed by the DSC scans shown in Fig. 11,

which shows a constant melting temperature (57 ◦C ) for all crystallization processes carried out

below and at 40 ◦C . Knowledge of T∞

am = Tzg allows to fix the a-m transition line and thus to

complete the diagram. Table 2 collects all the data - macroscopic transition temperature and

slopes of the transition lines - and gives also the value of TG taken from Fig. 9.

Determination of the same properties of polyethylene is not as straightforward as for iPS

and PǫCL, and it leaves questions open. Well determined are the zero growth temperature

and the growth activation temperature. Both, the least squares fit through the growth rate

data in Fig. 12 and the line through the data of Fig. 13 give Tzg = 132.5 ◦C and TG =

18 K. Determination of the various transition lines in the nanophase diagram is hindered in

linear polyethylenes by the crystal thickening in the solid state. For the crystallization- and
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Table 2: PǫCL: Data taken from Fig.9 and the nanophase diagram Fig.10

T∞

am T∞

ac T∞

mc Cm Cf Cc Cr TG

◦C ◦C ◦C nm−1K−1 nm−1K−1 nm−1K−1 nm−1K−1 K

77 99 135 6.90 × 10−3 3.33 × 10−3 1.54 × 10−3 1.82 × 10−3 397

the recrystallization line there is a way to overcome this problem: Since both remain unaffected

by the presence of co-units, and co-units suppress the crystal thickening, these two transition

lines can be taken over from the SAXS studies of poly(ethylene-co-octenes) and poly(ethylene-

co-butenes) [11][15]. Fig. 14 includes these two lines, which both extrapolate to T∞

mc = 154 ◦C .

The nanophase diagram of linear polyethylene cannot be reliably determined because of the

poorly known melting line. Since long time the dispute about the equilibrium melting point of

polyethylene goes on, so far without conclusion. An extrapolation of n-alkane melting data on

theoretical grounds led Flory and Vrij to T∞

ac = 144.7 ◦C [16], whereas Wunderlich proposes on

the basis of melting point determinations for large chain extended crystals T∞

ac = 141.4 ◦C [17].

Our own investigations by SAXS on octene- and butene-copolymers did not allow a decision.

Extrapolation of equilibrium melting points of copolymers to zero copolymer content yielded

for one series 144 ◦C [11] and for the other series 141 ◦C [15], which just indicates the error

limits of such extrapolations. We have included now in Fig. 14 the extrapolated melting line

given in [11]. From this choice there follows the shown location of the triple point Xs and the

shown a-m transition line which runs through Xs after a start at T∞

am = Tzg. Table 3 collects the

data thus obtained for macroscopic transition temperatures and transition line slopes, setting

the uncertain parameters in brackets.

16



Table 3: PE: Data taken from Fig.13 and the nanophase diagram Fig.14

T∞

am T∞

ac T∞

mc Cm Cf Cc Cr TG

◦C ◦C ◦C nm−1K−1 nm−1K−1 nm−1K−1 nm−1K−1 K

132.5 (144) 154 (23.3 × 10−3) (5.88 × 10−3) 3.12 × 10−3 3.64 × 10−3 18

5 Discussion

Evaluation of the experimental results collected in the previous section yields for each of the

investigated systems

• the enthalpy change ∆hma between the mesomorphic and the amorphous phase

• the surface free energy of mesomorphic lamellae σam

• the surface free energy of crystalline lamellae in the initial native state, σacn

• the surface free energy of crystalline lamellae in the final stabilized state, σacs

• the free energy barrier per monomer of the activation step ∆fcon

Taking the heat of fusion, ∆hca, from the literature, the heat of transition ∆hma follows from

an application of Eq.(7). In the next step σam is calculated using Eq.(35). The surface free

energy σacn is obtained using Eq.(37) with ∆scm defined by Eq.(11). The surface free energy of

the stabilized crystallites can either be calculated applying the corresponding relation Eq.(38)

or using Eq.(36). Finally, ∆f con is obtained by use of Eq.(32).

Table 4 refers to the experiments on i-polystyrene and contains all the thus obtained ther-

modynamic and kinetical parameters. The heat of transition ∆hma is indicative for a truly

intermediate character of the mesomorphic phase, being neither near to the liquid nor resem-

bling a perturbed crystallite. Comparing mesomorphic with crystalline lamellae, the drop of
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Table 4: iPS: Heats of transition, surface free energies and activation barrier as derived from

the data in Table 1 (∆z = 0.22 nm, ∆hca from [12])

∆hma ∆hca σam σacn σacs ∆f con

kJ
mol C8H8

kJ
mol C8H8

kJ
mol

kJ
mol

kJ
mol

kJ
mol C8H8

5.4 9.3 6.1 15.8 13.7 2.9

the surface free energy, from σacn and σacs to σam, is larger than that in the heats of transition

from ∆hca to ∆hma. This is, indeed, an expected result. Only under this condition stabilities

of crystalline and mesomorphic lamellae become inverted for nanocrystallites, thus opening the

mesophase mediated growth route.

The value found for the free energy of activation, ∆f con = 2.9 kJ per mole monomers,

amounts to about half of the heat of transition ∆hma. This is a reasonable result when we

associate the activation barrier with the chain straightening prior to an attachment. At T∞

am we

have at equilibrium

0 = ∆gma = ∆hma − T∆sma . (39)

Rather than decomposing ∆gma into the total changes of enthalpy and entropy, ∆gma can also

be split up into an intermolecular and an intramolecular part, as

0 = ∆gma = ∆hint
− ∆f con . (40)

Here −∆f con < 0 represents the drop in the conformational free energy accompanying the

transition from the mesophase to the melt, and ∆hint > 0 expresses the simultaneously weakened

attractive van der Waals interchain interaction energy. Since ∆hma includes both, ∆hint and

the energy increase of coiled compared to straightened chains, we have

∆hma > ∆hint = ∆f con (41)
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which basically agrees with the observation.

Table 5 shows the analogous set of data for poly(ǫ-caprolactone). Overall we find similar

Table 5: PǫCL: Heats of transition, surface free energies and activation barrier as derived from

the data in Table 2 (∆z = 0.85 nm, ∆hca from [11])

∆hma ∆hca σam σacn σacs ∆f con

kJ
mol C6H10O2

kJ
mol C6H10O2

kJ
mol

kJ
mol

kJ
mol

kJ
mol C6H10O2

10.5 17.9 2.5 9.9 8.5 6.86

properties as for iPS

• ∆hma suggests a mesophase character intermediate between the melt and the crystallites,

• the preference for the mesophase in thin lamellae is due to the much lower surface free

energy

• the stabilization of the initial native crystals is caused by a drop of the surface free energy

(σacn > σacs)

• the activation free energy corresponds to a large part of the heat of transition ∆hma.

Looking more closely, one notes remarkable differences in two of the experimental parameters,

namely in Cm and TG. Cm measures the strength of surface effects in mesomorphic lamellae. Ac-

cording to Eq.(35) effects are weaker for higher values of Cm, hence, much weaker in PǫCL when

compared to iPS. The growth activation temperature TG decides upon the rise of growth rates

with decreasing temperature. For rapidly crystallizing systems TG is low, for slowly crystallizing

systems TG is high. The much higher value of TG for iPS compared to PǫCL just expresses this

behavior. Looking at Eq.(32) we find two different factors of influence
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• Crystallization is accelerated if the activation barrier ∆fcon, or better, the barrier per unit

chain length, referred to the thermal energy,

∆f con

RT∞

am∆z
,

is low.

• Crystallization is accelerated if Cm is high, i.e., the surface free energy of mesomorphic

layers has a low value.

So, what is the reason for the more rapid crystallization of PǫCL compared to iPS? The value

of the two factors of influence are

for iPS: ∆f con/(RT∞

am∆z) = 2.89 nm−1 , Cm = 3.66 × 10−3 nm−1 K−1

for PǫCL: ∆fcon/(RT∞

am∆z) = 2.74 nm−1 , Cm = 6.90 × 10−3 nm−1 K−1 .

This means: The only reason is the much lower surface free energy of the mesomorphic lamellae of

PǫCL only. The kinetical factor, which controls the dynamics at the growth face has practically

equal values for both systems. Interesting to note, the thickness of the crystal lamella changes

in iPS and PǫCL with temperature in comparable manner, as is indicated by the similar values

of Cc. The difference lies in the entrance step: The initial thickness of the mesomorphic layers

at a certain supercooling below T∞

am is for PǫCL much smaller than for iPS. This facilitates the

chain attachment and leads to a higher growth rate.

As mentioned previously, the experimental data for linear polyethylene are partly accurate,

and partly uncertain. If we apply the same evaluation procedures as for iPS and PǫCL we

obtain for the thermodynamic parameters and the kinetical factor ∆f con the values given in

Table 6. Some of the quantities are useful, having acceptable error limits. This holds for the

heat of transition ∆hma and the surface free energies σacn and σacs of native and stabilized

crystals. ∆hma would become 20% larger, if T∞

ac is set to 141 ◦C , and a similar error range

exists for the surface free energies. However, this does not affect the main conclusion: The
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Table 6: PE: Heats of transition, surface free energies and activation barrier as derived from the

data in Table 3 (∆z = 0.25 nm, ∆hca from [11])

∆hma ∆hca σam σacn σacs ∆f con

kJ
mol C2H4

kJ
mol C2H4

kJ
mol

kJ
mol

kJ
mol

kJ
mol C2H4

3.7 8.2 0.82 7.7 6.7 0.35

mesomorphic phase of PE has again an intermediate character, being neither solid nor melt

like. Indeed, arguments have been presented in support of an identity with the hexagonal phase

which becomes macroscopically stable at high pressures and temperatures [7].

Absolutely uncertain are the values for σam and ∆f con, because they are extremely sensitive

with regard to the choice of the triple point Xs. A slight variation of the melting line shifts

Xs in a way that the a-m transition line changes its slope, Cm, drastically. The result are

correspondingly large changes in σam and ∆f con. In fact, when comparing ∆f con with ∆hma

or a theoretical estimate, doubts arise. For iPS and PǫCL, ∆fcon amounts to more than half

of ∆hma, which is reasonable; now we have a value one order of magnitude below ∆ham, which

appears improbable. A calculation of the change of the conformational free energy resulting from

a transition from the all-trans to the coiled state of PE in the framework of Flory’s RIS model

yields 4.5 kJ/mol C2H4[18]. The difference ∆f con between the coiled state and the mesophase

is of course smaller, but not by one order of magnitude. One therefore might think that the

triple point is located at a slightly higher temperature, and that ∆f con as well as Cm are larger

than the values given in Tables 3 and 6. The peculiar result in the experimental data of PE

is the extremely low value of TG, which is the expression for the easiness of crystallization in

PE. Is it due to a particularly low activation barrier or a particularly low surface free energy of

mesomorphic PE layers ? We cannot give a definite answer, but since the surface free energy
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σam is for sure much lower than in the other systems it is most probably the main responsible

for the rapid crystallization of PE.

With the a-m transition line also the triple point Xn is fixed for each system, being located at

the intersection with the crystallization line. The point Xn, being shown in all three nanophase

diagrams, marks the respective end of the mesophase-mediated growth process. For crystalliza-

tion temperatures above T (Xn) and crystal thicknesses above d(Xn) growth must proceed by a

direct attachment of chain sequences onto the lateral growth face of the crystal. As it appears,

so far experiments never entered this temperature range. In principle, polymers also crystallize

between T (Xn) and T∞

ac , however, as it seems, this occurs with a vanishingly low rate. For

the observed, acceptable crystallization rates the participation of an intermediate mesomorphic

phase is obviously a necessity.
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[10] B. Heck, S. Siegenführ, G. Strobl, and R. Thomann. Polymer, 48:1352, 2007.

[11] B. Heck, T. Hugel, M. Iijima, E. Sadiku, and G. Strobl. New J.Physics, 1:17, 1999.

[12] M. Al-Hussein and G. Strobl. Macromolecules, 35:8515, 2002.

[13] J.D. Ferry, W.C. Child, R. Zand, D.M. Stern, M.L. Williams, and R.F. Landel. J.Colloid

Sci., 12:53, 1957.

23



[14] C. Friedrich. private communication, 2006.

[15] T.Y. Cho, B. Heck, and G. Strobl. Colloid Polym.Sci., 282:825, 2004.

[16] P.J. Flory and A. Vrij. J.Am.Chem.Soc., 85:3548, 1963.

[17] B. Wunderlich. Macromolecular Physics, Volume 3, page 58. Academic Press, 1980.

[18] G. Strobl. The Physics of Polymers. 3rd Edition, page 64. Springer, 2007.

[19] S. Acierno, E. Di Maio, S. Iannace, and N. Grizzuti. Rheol.Acta, 45:387, 2006.

[20] J.P. Armistead and J.D. Hoffman. Macromolecules, 35:3895, 2002.

24



Figure 1: Multistage model: Pathway followed in the growth of polymer crystallites
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Figure 2: Thermodynamic conditions assumed for crystallizing polymers: Temperature depen-

dence of the chemical potentials of a mesomorphic and the crystalline phase. The potentials are

referred to the chemical potential of the melt and denoted ∆gam and ∆gac
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Figure 3: (T/n−1) nanophase diagram for polymer layers in a melt (label a) dealing with three

phases: mesomorphic (m), native crystalline (cn) and stabilized crystalline (cs). Lines of size

dependent phase transitions: crystallization line Tmcn , recrystallization line Tmcs , melting line

Tacs , a-m transition line Tam. Two routes for an isothermal crystallization followed by heating;

A (low crystallization temperatures) and B (high crystallization temperatures)(from [7])
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Figure 4: iPS: Temperature dependence of the radial growth rate. The adjusted curve corre-

sponds to Eq. (4) with TA = 1458 K, TV=327K [13], TG=788 K and Tzg = 275 ◦C
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Figure 5: iPS: Plot based on Eq.(34) giving Tzg = 275 ◦C
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Figure 6: iPS: Crystallization line, recrystallization line (dots) and melting line (dashes) deter-

mined by SAXS and DSC[12], zero growth temperature T∞

am from Fig.5 and a-m transition line

(dash-dots)
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Figure 7: iPS: DSC melting curves obtained after crystallizations at various temperatures be-

tween 180 ◦C and 225 ◦C , indicating a triple point temperature T (Xs) ≈230 ◦C [12]
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Figure 8: PǫCL: Temperature dependence of the radial growth rate. Representation by Eq. (4)

with TA = 4650 K (TV = 0)[19], TG=397 K and Tzg = 77 ◦C (from [4])
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Figure 9: PǫCL: Plot based on Eq.(34) giving Tzg = 77 ◦C (from [4])
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Figure 10: PǫCL: Crystallization line, recrystallization line (dots) and melting line (dashes)

determined by SAXS[11], zero growth temperature T∞

am from Fig.9 and a-m transition line (dash-

dots). The solid lines connecting the beginning and the end of each heating process show the

experimentally determined crystal thickness variations

33



Figure 11: PǫCL: DSC melting curves obtained after crystallizations at various temperatures

between 37 ◦C and 47 ◦C (heating rate 10 K/min), indicating a triple point temperature

T (Xs)=57 ◦C [11]
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Figure 12: Linear PE (Mw = 6×104 g mol−1): Temperature dependence of the radial growth

rate. Data representation based on Eq.(8) with TA=2890 K (TV=0K)[20], TG=18 K, Tzg =

132.5 ◦C (from [5])
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Figure 13: Linear PE: Data from Fig.12 represented according to Eq.(34). The result for Tzg is

132.5 ◦C (from [5])
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Figure 14: Linear PE: Crystallization line, recrystallization line (dots) and melting line (dashes)

determined by SAXS[11][7], zero growth temperature T∞

am from Fig.13 and a-m transition line

(dash-dots)
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